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ABSTRACT

The differential rate eguations for some simple frequently occurring Avrami—Erofeev
type transformations were solved for isothermal as well as non-isothermal reactions. It is
shown that the expressions commonly used to extract kinetic parameters from non-iso-
thermal experithents are obtained via an incorrect procedure. However, the correct
kinetic parameters will result from application of these equations to certain types of
transformation.

INTRODUCTION

Non-isothermal reactions in solid systems involving formation and growth
of nuclei are often analysed using equations which are also applied for the
description of isothermal reactions. These equations are usually derived by
differentiation of the integral expression for «, a method valid for isothermal
reactions only., The resulting expression for da/df is then used to analyse
non-isothermal reactions. Henderson [1] has questioned this procedure.
Therefore, the fundamental equations for da/d? of some simple frequently
occurring types of transformation are solved below for non-isothermal reac-
tions and the resulting expressions compared to results of the above-men-
tioned procedure. To that end, the equations normally used to describe iso-
thermal reactions are first given.

ISOTHERMAL REACTIONS

The equations generally used for describing isothermal reactions in solid
systems with nuclei formation and growth are

[In(1 —a)]*" = kt = g(c) (1)
and
—in(l —a) =k* " = g*(a) (2)

These equations are often called Avrami, Erofeev, Johnson/Mehl equations; a
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TABLE 1
Summery of possible values for n for different mechanisms (after refs. 1 and 3)

Reaction mechanism n Reaction mechanism n
Constant nuclezation rate . Growth of a constant number of nuclei
(rate of nucleation is zero)
One dimensional growth 2 One-dimensional growth 1
Two-dimensional gro vth 3 Two-dimensional growth 2
Three-dimensional grcwth 4 Three-dimensional growth 3

combination of these names is also used. The value of n depends on the
mechanism of the reaction, as follows from Table 1 where a summary is
given of several values of n fov different mechanisms based on constant or
zero nucleation rate. If the nucleation rate changes, n is not constant: when
the nucleation rate increases, » is higher than in the case of constant nuclea-
tion rate, and for a decreasing nucleation rate, n will lie between those for
constant and zero nucleation rate.

The results obtained from egns. (1) and (2) differ but can easily be con-
verted into each other

gla) =g"(a)* ™ (3)
hence

priin = p (4)
k* and k are represented by the normatl Arrhenius equation and hence

A*iin =4 and E*n=E (5)

To trace the origin of egns. (1) and (2) some simple and specific reactions
will be analysed in more detail.

For a reaction with a constant number of nuclei per unit length (N,), or
when at the beginning of the reaction a constant number of nuclei is formed
immediately (site saturation), and assuming one-dimensional growth, the
reaction rate is given by

do

To take overlap of nuclei into account, the right-hand side of eqn. (6) must
be multiplied by (1 —«) [2,3]

do

57~ Nik dt(1 —a) (7)
Integration results in

—In(1 —a) = [Nk, dt = [k, dt (8)

For isothermal reactions kg is constant, hence
—in(1l —a) = kgt (9)
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If nuclei grow isothermally in three dimensions with an equal rate con-
stant for each dimension, and allowing for overlap

—In(l —a)= C;.,N;.,lifk1 dt:r = R3#3 (10}

Equation (10) is generally written like eqn. [2]: —In(1 — «) = k*t* or [—In-
(1 —a)]¥® =kt [eqn. (1)]. Equation (2) results is an overall value for ail
dimensions, eqn. (1) in a value for one dimension.

The rate expressions are different for reactions in which the number of
growing nuclei increases. At constant nucleation rate the number of nuclei
formed between ¢t = 7and ¢ =7 + d7 is given by

AN = ki(n—3)N5(n—1) AT (11)

If nuclel grow in one dimension, the change in length per unit length, or
the conversion at time ¢ for the nuclei formed between 7 and 7 + dr is: da, =
ks Ngdrk,dE or do, = kdd7k df; on integration one finds

¢
o, =Redr f k. dt (12)

The total conversion is obtained by integration of eqn. (12) from 7 =0 to
7 = t. When allowing for overlap this results in
t

“In(l —a) = f(kf f g dt) dr (13)

0
For isothermal reactions
—In(1 — @) = Jkek, t? (14)

In the case of three-dimensional growth with k| equal for all dimensions, we
may write

da, = kfaNfa dTC3[k1 de]® = R dT[kg dt]3 (15)
which on integration for an isothermal reaction with overlap results in
—In(l —a) =1k:R3t* (16)

This can be written as —In(1 —a) = 2™t [eqn. (2)] or [—In(1l —a)}** = kt
[egn. (1)]. Again, the normal substitutions of eqns. (4) and (5) may be used
to convert values from eqn. (1) to egn. (2) or vice versa. However, both
equations [(1) and (2)] now resuit in overall values

r* = %ksz‘l with A* = %AfAE_l and E* = B¢ + (n — 1) E, (17)

and

1/n Ef+(n’-z— 1) E, 18)

g 1
k= [—}1- kfkg—l]” with 4 = [; Ang—l] and E =

A= Ngn-1yAsn—y and A, = CHOGVA,  (forn =2, 3 and 4) (19)
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The general equation relating conversion to time, taking into account over-
lap, is
da
l—«

£
= [ [6(, 1™ Ner) dr (20)
0

in which G(¢, 7) is a measure for the size at time ¢ of a nucleus formed at
time T and equals normally: Ct [k ;dtN¢(7) gives the number of nuclei formed
at time 7. In isothermal reactions the G and N functions are usually constant
and integration is straight forward, as was shown above.’

Summarising, for growth of a constant number of nuclei, egn. (1) results
in activation energies for growth in one dimension, and use of egn. (2)
results in an activation energy n times the value obtained by using eqn. (1).
For growth combined with nucleation overall values are obtained [see eqns.
(17)—(19)1.

NON-ISOTHERMAL REACTIONS

Probiems airse when non-isothermal experiments are performed which
must be analysed. Some authors [4—7] use equations obtained by differen-
tiating eqn. (1) and apply the equation obtained to describe the rate of non-
isothermal reactions. However, the derivative of eqn. (1) is not valid for non-
isothermal reactions and may be applied to describe isothermal transforma-
tions only, e.g. as applied by Erofeev [8]. Nevertheless, this incorrect proce-
dure is often applied and will be shown here.

When eqgns. (1) and (2) are differentiated the following equations result,
respectively

dex

= kn[—in(1 —a)]*1/7 4t (21)

11—«
da —_— I,k n—1

T =Rt dt (22)
On integration
[—In(1l — )12 = g(a) = [k de (23)
and
—In(1 —a) = g"(a) = [ k*nt"t dt (24)

For isothermal reactions eqn. (3) is valid: g(a) = [g* {(@)]1?'". However, for
non-isothermal reactions this is generally not correct because & and k* are
not constant and

[k ae= [fk*nt""l dt]“" (25)

If n =1 it is still correct of course. From this example it is seen that at least
one of the derivatives of the equations valid for isothermal reactions may not
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be applied to non-isothermal reactions. The correct procedure involves inte-
gration of the fundamental expression valid for da/di such as eqn. (6). This
integration is shown below, again for the simple cases previously described.
For a non-isothermal reaction with a constant number of nuclei, one-
dimensional growth and taking into account overlap, egn. (7) gives

flcf'm=—1n(1—o¢)=fivm1 dt= [kgat (26)

For three-dimensional growth, with &, equal for all dimensions, and with
overlap

do 5 3 4 3
fl—_—a=—1n(1_0!)=czN3|:6[ fey dt:l =|:of kg dt:l (27)
or
[—In(l—a)l¥3= j kg dt (28)
0

The general result is

[In(l —a)i*/" = ft ke dt (29)
0

which is equal to eqgn. (23). Thus, for a transformation with a constant
number of nuclei {or site saturation), use of eqn. {23) results in correct
values, although an incorrect procedure was followed for its derivation. This
implies that use of egn. (24) is not allowed [see eqn. (25)].

For a reaction with a constant nucleation rate the equation obtained for
growth in # — 1 dimensions reads

Hd_“—a)— fkf[f ke dt] “ar (30)
0

When instead of this relation eqn. (23) is applied, some overall values for the
kinetic parameters will be obtained. However, at first sight it is not clear
whether use of eqn. (28) with the substitutions valid for isothermal reactions
[eqn. (18)] will result in the correct kinetic parameters, as in the case with
reactions with a constant number of nuclei. To resolve this question, the
integrals in egns. (23) and (30) will be solved by approximation and the
results compared. _

First eqn. {28]: g(a) = [—In(l —a)]'" = fkdt. Usually a linear heating
rate is employed in non-isothermal experiments, thus T'= T, + 8¢ and df =
dT/B. With those substitutions eqn. (23) can be solved (cf. Doyle [9])

t T x
- _ —E dT=___AE exp(—x) dx
g(a) bfkdt Tquexp T B 7 T

_ AEF f exp(ﬂc)dx f eXP(“x) ] (31)
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with x = E/RT; x, being >>x, the first integral can be neglected and eqn.
{31) reduces fto

AE .
g(a) =BE p(x) (32}
with
pe) = [ ZECE e g (33)

x

The function p(x) is approximated using the relation

f et dx = x1— g 2 RV O)T (34)

m=0 xm+1

as was done by Coats and Redfern [10]. When only the first term of this
series 15 used the result is

8@) = [=In(1 —a)]*"" = S p(x) = 2 12 exp () (35)

Now egn. (30) will be solved for n = 2, i.e. for nucleation and one-dimen-
sional growth
t

-
—In(1l—a)= [k k df |d (36)
1 o Offo . ]1’

First the integral on the right is solved, using the following substitutions

T=T0+ﬁt9 dt__'dTT) TT=T0+va dT:dgrv 1?=3’ andTi=U
t t /T
- fawol-Fr) -4 [ ol ) ol
:_[kgdt JAgexp( RT d¢ B ir exp BT T d 7
()
¥
B ; y?
AT S exp(—& y) = eXp (—% y)
=2"£ —_
ﬁ[yf y? W Uf y? d‘y]
JAE [ Fexp(—xg) . ¢ exp(—x,) ]
" gR [f Pl T (37)
with
Xg =% ¥ and Ug =% ) (38)
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The integrals are again approximated by the first term of the function used
by Coats and Redfern [eqn. (34)], resulting in

,f kg dt = A;gg [expii—xg) - expg”g)] (39)
Substituted in (36)

t
—In(l —a)= Of ks X Agf [T2 exp( -jf—) T2 exp(— RE;,_)] dr (40)

i thus

E
kf=Afexp(—R;,) and Yo =

—In(l —a)=—

T
E E
v exp( Ee u) exp (— £ y) exp (~— —& u)
AsA R [ R R ]dv

Eﬁzxf v?

co(-Ers)  exp(-Eb)
A;AgR[ P\ R A S W e A
E y? f 02 v

E,+ E
y exp[————( H )

~f U4R ] du] (42)

v being the variable over which eqn. (42) is integrated. According to Doyle
(9], the value of the integral for the lower limit is very small and can be
neglected. Using the substitutions of egn. (38) and the approximation of
eqn. (34), the solution of eqn. (42) becomes

E
AAR Ef exp( =7 ) exp(—uf) (E; + E,)
ng X y2 X f uf___—Ra—

x f" epr;u“’)duw]

w

with
-_'-& =£ =___._(E£+EE) (E£+Eg)
Xt R Y. Us R v, Xw R y d Uy R
xp(—Z2y) oxp(—E2)
_AaRR FPURY) OTPURY R
E.B* LE, y? y? (Eg + E;)
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(E; + Ey) }
A ~i “TES
xexp[ r_” ]=AngR2x T9 X ex {—————(Ef+EE) [1————Ef ]
" EE S p RT (Ex + Ey)
(43)

Tor growth in two or three dimensions, eqn. (30) can be solved in the same
manner, resulting in, respectively

—in(1l —«a) =ﬁ(ﬂ)2 (E)s T¢ exp {— (Er* 2Fg) 2Eg)} []_ _ 25 . E ]

E:\Eg/ \ RT E¢+E; E¢+2E,
(44)

and
—In(1 — =:4:(é_=)3(£)“ 8 oo | (B:+ BEy)

In(l —a) 7, (5, ) \B T® exp e

3E; 3E; E; ]
— + _
* [1 E:+E;, E¢+2E;, E¢+3E, (45)

When ean. (45) is raised to the power 1/4 it can be compared to eqn. (35)
with 7 = 4. Into egn. (35) we substitute for A and E the relations given in
eqn. (18), valid for isothermal reactions. Thus, eqn. (35) becomes

(GA,A2)"? 4R

Be) = [~In(l —a)]¥s = LS5

T? exp {————(Ef * %) } (46)

4RT

It is seen that this expression differs from eqn. (45) raised to the power 1/4,
except when E; = E.

To show the difference between eqns. (46) and (45) the conversion is cal-
culated as a function of the temperature for some selected kinetic parame-
ters. The result is shown in Fig. 1. Equation (46) results in slightly higher
conversions than eqn. (45). The differences between the two eqguations

Gl ——
300 310 320 330 340
————gm— temperature (K)

Fig. 1. Conversion as function of temperature calculated from egns. (45) ( ) and
(46) (»+~--- ), With A¢ =10%5"1, Es= 60 kd mole™, 4, = 104 571, E; = 40 kJ mole™ and
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depend mainly on the difference between E; and E,. Thus, the value for A
obtained from eqn. (35) does not agree with those obtained from isothermal
measurements. However, the temperature dependence of eqgn. (46) is equal
to that of eqn. (45); thus, the substitution E = [E; + (n — 1)E,]/n applies to
the activation energy in (35) and equal values are found from isothermal and
non-isothermal experiments. This means that eqn. (23) can also be applied to
obtain the value of the activation energy of reactions with a constant nuclea-
tion rate.

Several authors [4,11,12] have stressed that, besides non-isothermal
experiments, an isothermal experiment should always be performed when
trying to establish the mechanism of a reaction. To find the mechanism as
well as the activation energy from non-isothermal experiments, In g(«)/7T? is
usually plotted against 1/7. When a straight line is found, g(«) is considered
to represent the correct mechanism, However, it can easily be shown that for
all values of n straight lines will be obtained with activation energies depend-
ing on n. For example, assume a reaction involving nucleation and three-
dimensional growth, i.e. that # = 4, eqn. (45) is then valid. The experimental
results are analysed with egn. (35) for n=1, 2, 8 and 4. For n=1,
In{{—In(1 — «)}/T?}, is in fact equal to In[eqn. (45)], which is

1{—%(%5)3 (%)4[1 — ]} +6InT —Efgz?E

A plot of In{[—In(1 —a)]/T?} against 1/7 will thus result in a straight line
with an activation energy of about (E£;+ 3 E;) because the change in the
factor In T is negligible, the reaction usually occurring in a narrow tempera-
ture region. More generally speaking, the activation energy found for a given
n value equals (E; + 3 E)/n. The activation energy thus depends on the value
of n. This effect was indeed found experimentally by Dharwadkar et al.
[11].

On the basis of the above, the use of the plot of In[g(«)]/T? against 1/T is
considered unsuitable for establishing the mechanism of a reaction. An iso-
thermal experiment is necessary to find the correct value of n which in turn
is needed to establish the activation energy. Only for the correct value of n
are the activation energies from isothermal and non-isothermal experiments
identical.

The above conclusion presupposes the use of eqn. (1), If egn. (2) is used
to derive the activation energy from isothermal experiments, one finds £ =
E:+ 3E, and n = 4, whereas application of eqn. (23) [or (35)] for non-iso-
thermal experiments results in E = (E; + 3E;)/n; the activation energies
derived from isothermal and non-isothermal experiments are no longer the
same. Therefore, the use of egn. (1) is preferred.

CONCLUSIONS

The equations
[In(l —a)]*" = Rt (1)
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and
—n(1 —a) = B*t" (2)

may be used to describe the kinetics of isothermal reactions. Kinetic parame-
ters from both equations can easily be converted into each other {eqn. (5)].

Although use of the derivative of egns. (1) and (2) to analyse non-iso-
thermal experiments is not correct, the use of the derivative of egn. (1)
results in the correct kinetic parameters for reactions with growth of a con-
stant number of nuclei.

For reactions with nuclei growth and a constant rate of nucleation only
overall values can bhe obtained. Here too, the derivative of egn. (1) can be
used to obtain the correct overall activation energy, but the overall pre-
exponential factor A may differ from results obtained from isothermal expe-
riments, depending on whether the activation energies for nucleation and
growth differ much,

Analysis of a reaction with non-isothermal experiments only will not
unegquivocally reveal the correct mechanism, nor the correct activation
energy. At least one isothermal experiment is necessary to establish the value
of n. Only for the correct value of » will identical values for £ result from
isothermal and non-isothermal experiments; egn. (1) and its derivative must
then be used.

Since the derivative of egn. (2) cannot be applied in interpreting non-iso-
thermal experiments, the use of eqn. {1) or its derivative is recommended for
analysing isothermal or non-isothermal experiments, respectively.

LIST OF SYMBOLS

o conversicn

A, A" pre-exponential factors

B heating rate (K s71)

C,Cy,Ch 3 form factors

E E* activation energies (kd mole™1)

G(t, 7) growth function

k,k* reaction rate constants

m number of dimensions in which growth occurs

N number of nuclei (per unit length, surface or volume)
Ng1, N3, Ng(n—1) number of potential growth nuclei (*'germ nueclei”} per unit (length)”—1
Ng(7) number of nuclei formed at time 7

n order of reaction

R gas constant (kJ mole™ K1)

T, To temperatures (K)

£, 7 times

Subscripts

f For nuclei formation

g For growth

1,2,3 Number of dimensions
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